

"Food for thoughts"

Jon Davies MESH Project Coordinator

You are not alone..... There is someone out there...

Habmap UKSeaMap MESH

Why is he here?

Introduce the MESH Project, give a brief overview of other marine mapping activities in NW Europe, and offer a few thoughts on doing an INTERREG project

Questions....

- > What is the MESH Project?
- Can you really model marine landscapes?
- Does MESH do 'marine spatial planning'?

What is the MESH Project?

Development of a framework for Mapping European Seabed Habitats

MESH Partners

AMGREDOFE/DD AC ORIELAU CENEDIALTHOL CYMRU NATIONAL MUSELIMS & GALLERIES OF WALES

MESH Actions

- Collate and harmonise existing habitat maps
- Develop standards and protocols
- > Test protocols and standards
- Develop predictive mapping tools
- Case studies on uses for maps
- Communication and dissemination

Generating maps

- > Action leaders
 - JNCC (David Connor & Neil Golding)
- > Outputs
 - Online metadata catalogue relevant studies
 - Data exchange format for map data
 - Unified GIS maps of seabed habitats for north-west Europe
 - Confidence maps

Standards & protocols

- Action leaders
 - IFREMER (Jacques Populus), Marine Institute (Fiona Fitzpatrick), CEFAS (Roger Coggan)
- Outputs
 - Review of standards and protocols
 - Catalogue of habitat signatures
 - Assessment of the EUNIS marine habitat classification for mapping and recommendations for its modification
 - A guidance framework for marine habitat mapping

Field survey

- > Action leader
 - TNO (Jan van Dalfsen)
- Outputs
 - New field surveys to test standards and protocols
 - Data to support modelling
 - Validation samples
 - New areas mapped according to agreed standards

Modelling

- > Action leaders
 - University of Gent (Vera van Lanker), IFREMER (Jacques Populus)
- Outputs
 - Marine landscape map for MESH area
 - Models to predict habitat distribution
 - Biotope matching program

Using maps

- > Action leaders
 - Marine Institute (Fiona Fitzpatrick & Jonathan White)
- Outputs
 - Workshops on habitat mapping and spatial planning
 - Report describing case histories of the use of habitat maps in marine management

Communicating results

- > Action leaders
 - * All led by JNCC (Jon Davies & Gez Thulbourn)
- Outputs
 - Website
 - Interactive mapping website
 - Stakeholder database
 - International conference (spring 2007)
 - Follow on strategy

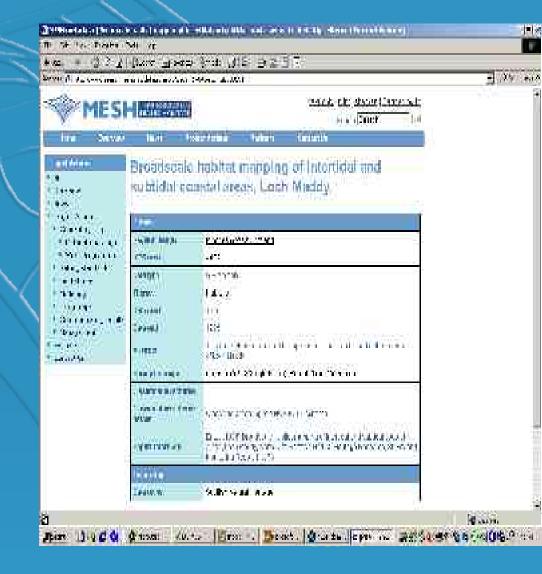
Oops, one more action

- Project management
 - Management groups
 - Technical workshops
 - * Reporting: financial and technical
 - Planning

Probably the most time consuming.....

Communicating results: progress

- Established a web site with:
 - Project outline
 - Project news & publications
 - Searchable metadata catalogue
 - Registration facility
 - Extranet for Partner 'exchange'
- > Leaflet, bookmark & banner stands
- > Stakeholder database



Generate maps - progress

- Produce a metadata catalogue of relevant data sets
- Established data exchange formats (DEF)
- Produce 'MESH data agreement'
- Collate existing mapping data into a GIS
- Tools to correlate to standard classification schemes
 - EUNIS
 - Habitats Directive Annex I types
 - OSPAR priority habitats

Meta-database

- Agreed structure (core and additional fields)
- Conforms to ISO 19115
- On-line searchable database
- ArcGIS xml export tool

Standards & protocols progress

- Review of habitat mapping standards
 - Remote sensing
 - Acoustic systems
 - Video and imagery
 - In-situ sampling
- > Intercalibration workshop
- Catalogue of habitat signatures

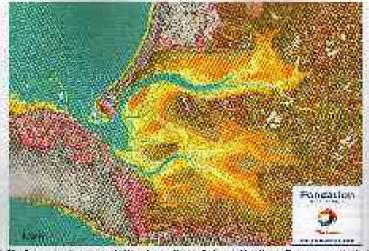
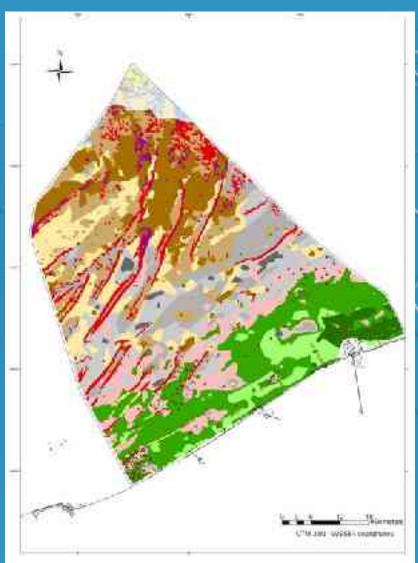


Figure 19. A managraphic map of Minister on District, Local Aberthous, France or epitings have control accuracy. Supercolarcedy is all and ground resolution, Los then IFREMER FELING

The map colon (I.g. 21) shows a LNOS car yearly increase with a logic graph a DNM. Demon Modell from a part of Wombley Bay, UK where both Althour plannings have been l provide a seam essitians that at may the eggst the

Figure 16: Sombline house with and reprographic English Financian Rode: of Western S. v. WARRANT IN PROPERTY A PRINCIPLE OF

MESH events


- Intercalibration workshop, Brest: 20-23 Sept 2005
- Landscape modelling workshop,Gent:3-4 Oct 2005
- MESH Technical workshop, Belfast: 29 Nov-1 Dec 2005
- MESH Technical workshop, Edinburgh: May 2006

www.searchMESH.net

MESH in a clam shell...

Establishing the ways and means to produce consistent maps for NW Europe, and showing how they might be used.

Can you really model marine landscapes?

Yes..

If you know what they are!!

Terminology problem

- Biogenic reef
- GravelMudo
- > Tigeswept sand

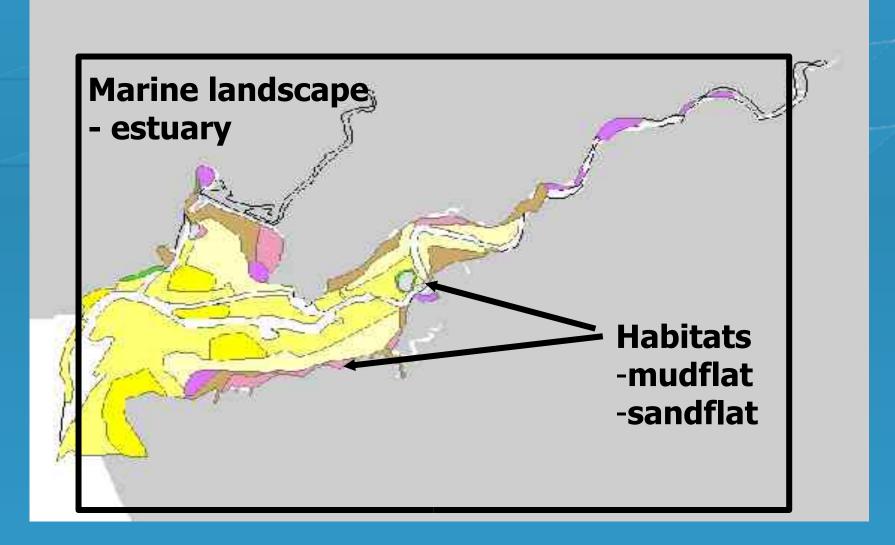
- Photic reef?
- Gravel Kanks
- Mud plains
- Sandy bay

Political 'habitat': Annex I: reef, mudflat, estuary OSPAR: oyster bed, seamount

Terminology

> Habitat

A recognizable space which can be distinguished by its abiotic characteristics and associated biological assemblage, operating at particular spatial and temporal scales


Marine landscape

A suite of habitat types which occur together, often in a specific pattern, to form a topographically distinct feature

Classification

A structured system of habitat or landscape types, often in a hierarchy, in which the types are clearly defined and recur in different geographical places
www.searchMESH.net

Habitats and landscapes

UKSeaMap project

- Analysis of geophysical and hydrographic datasets
- Draft maps of seabed and water column features
- Consultation with stakeholders & 'experts'
- Biological data gathering and interpretation
- > Biological validation and characterisation
- Web GIS application
- ➤ Complete by Spring 2006

Geophysical & hydrographic data

Seabed	Water column
Substrata	Surface temperature
Photic depth	Salinity
Natural disturbance	Mixing regime
Bathymetry	Temp/salinity
Bottom temperature	Febrianshiptions
Coastal features	\bigvee
Bed forms	

UKSeaMap v MESH

	UKSeaMap	MESH
Broad-scale – landscapes		✓ (Action 4)
Fine-scale - habitats		
Coverage	UKCS	North-west
Map type	Polygon + point	Polygon + point
Classifications	Landscape	Landscape, EUNIS, Annex I, OSPAR, BAP
Due	Spring 06	v1 Spring 06 Final Spring 07
Web access	jncc.gov.uk	searchMESH.net

www.searchMESH.net

Does MESH do 'marine spatial planning'?

No!

UK Government is funding a pilot project on marine spatial planning in the Irish Sea:

http://mspp.abpmer.co.uk/mspp/

Food for thoughts – the MESH experience

- Carefully consider the 'contract', particularly IPR & data ownership issues
- Meetings are good:
 - They make people do some work!!
 - Overcome cultural barriers and encourage co-operation
- Allow time for reporting
- Data is easy to find, difficult to secure

Scientists are good at science..

Managers manage..

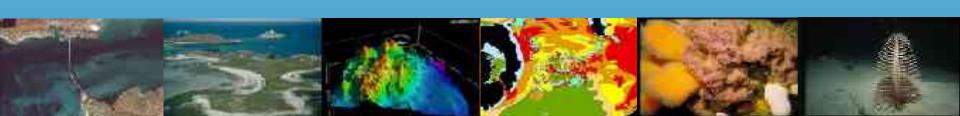

Administrators administrate...

Finance officers and lawyers rule!!

Talk to your financial & legal colleagues... regularly

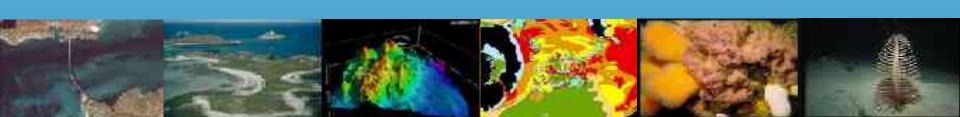
Have fun...

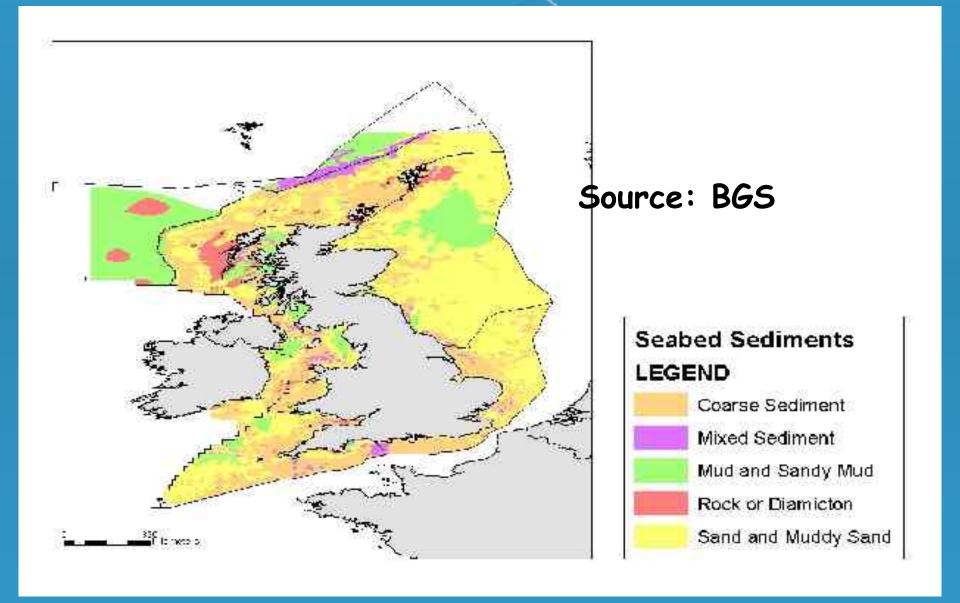
Enjoy transnational working

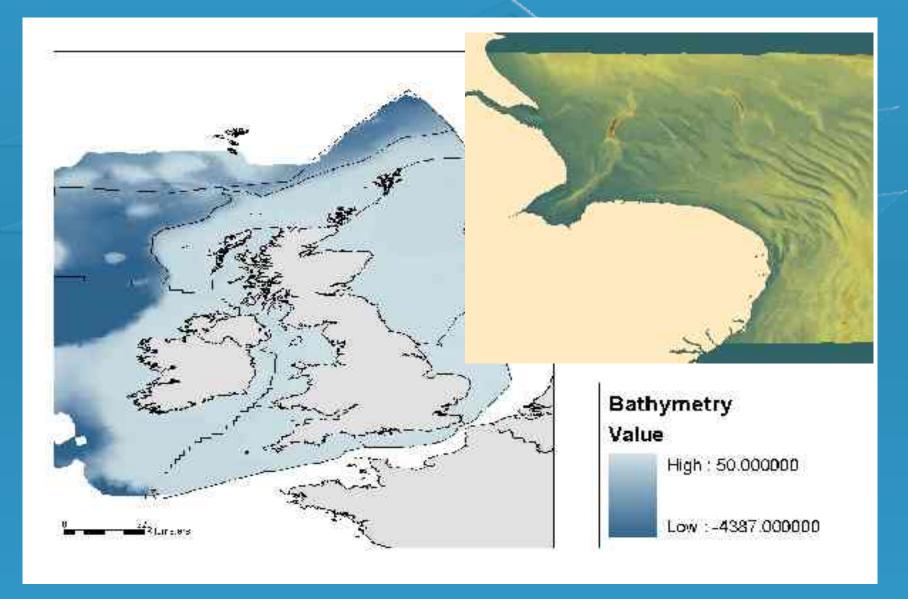


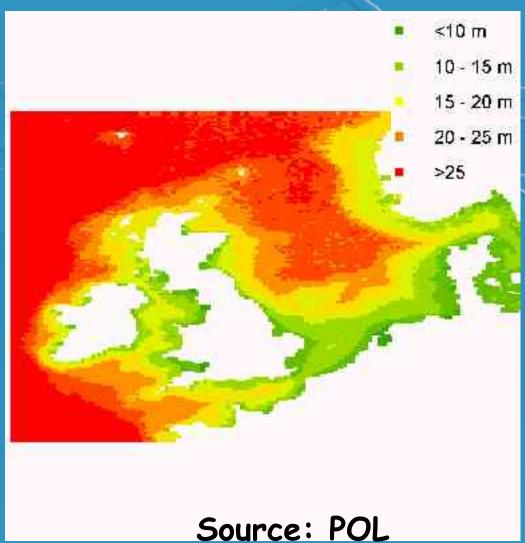
www.searchMESH.net

Jon.Davies@JNCC.gov.uk

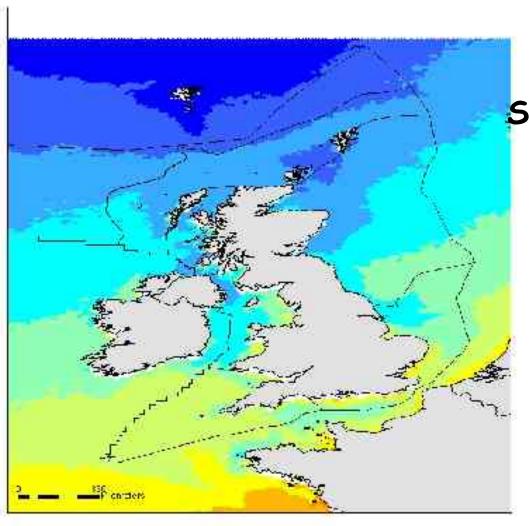







Seabed substrata

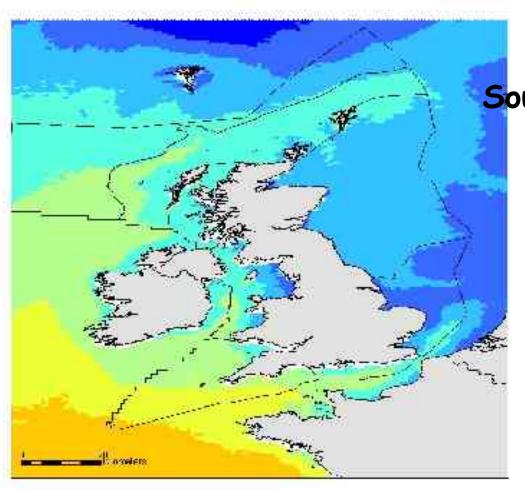
Bathymetry



Photic depth

www.searchMESH.net

Surface temperature - summer

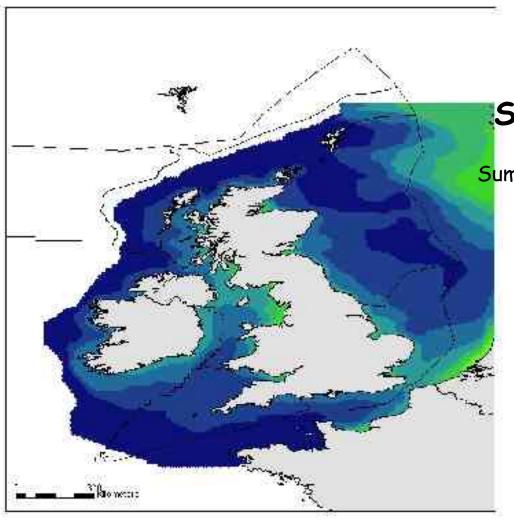


Source: POL

Summer Surf. Temp. SUMTMP

- 7.70140 9.97760
- 9.97761 11.26700
- 11.26701 12.52310
- 12.52311 13.78710
- 13.78711 15.02270
- 15.02271 16.30620
- 16.30621 17.5B720
- 17.58721 18.93910
- 18.93911 21.35730
- 21.35731 25.76280

Surface temperature - winter

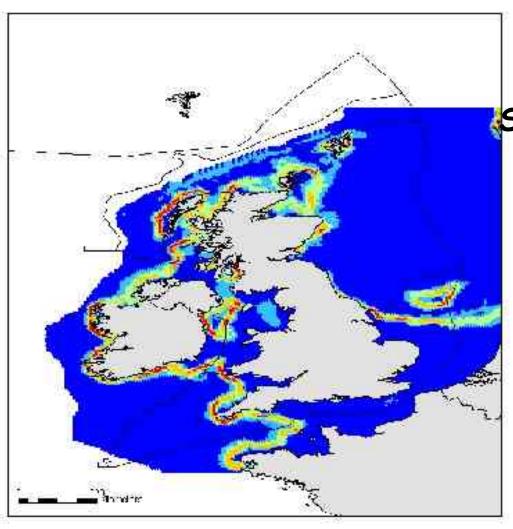


Source: POL

Winter Surf. Temp. WINTMP

- 0.30000 5.05570
- 5.05571 6.86500
- 6.86501 8.04930
- 8.04931 9.22390
- 9.22391 10.40890
- 10,40891 11,58800
- 11,58801 12,72540
- 12.72541 13.86850
- 13.86851 15.90000

Salinity


Source: POL

Summer values

Surface Salinity

- 12,19650 19,39590
- 19.39591 24.99280
- 24.99281 29.58690
- 9.58691 31.92320
- 31,92321 33,03000
- 33.03001 33.87050
- 33.87051 34.44740
- 34.44741 34.89080
- 34.89081 35.41380

Fronts

Source: POL

Summer Fronts SUM_FRONT

- 0.00000 0.04460
- 0.04461 0.14130
- 0.14131 0.26520
- D.26521 0.44240
- 0.44241 0.83260

Presentation Title

- Bullet
- > Bullet
- > Bullet
 - Bullet
 - ❖ Bullet
 - Bullet