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This paper describes structural data collected during field 

work in southern East Greenland, a region characterised by 

a complex tectonic history. Here, 3D photogeology based on 

aerial and oblique photographs using high-resolution photo-

grammetry of a 150 km2 area in Sødalen in southern East 

Greenland shows ESE–WNW-trending faults cross-cutting 

Paleocene rift structures and flexure-related normal faults. 

The kinematic analysis highlights oblique and left-lateral 

strike-slip movements along faults oriented 120°. Strike-slip 

and dip-slip kinematic indicators on the walls of the chilled 

contacts between alkaline E–W-oriented dykes and the vol-

canic host rocks suggest that the faults and dykes formed 

at the same time, or maybe the faults were re-activated at a 

later stage. Palaeostress analysis, performed by inversion of 

fault-slip data, shows the presence of three different tectonic 

events. Coupling the 3D photogeological tool with struc-

tural analysis at key localities is a fundamental way to under-

stand better the tectonic history of such a large area.

 

Geological setting
The Blosseville Kyst in southern East Greenland is charac-

terised by a thick sequence of flood basalts and mafic intru-

sions (Fig. 1). The Skaergaard layered gabbro, the Miki Fjord 

macrodyke and dolerite sill complexes were formed dur-

ing the continental break-up and the initial opening of the 

North–East Atlantic ocean at 55 Ma (Nielsen 1975; Karson 

& Brooks 1999; Tegner et al. 2008).

In the Sødalen region pre-basaltic sediments characterise 

the Kangerlussuaq Basin and the lower part of the Blosseville 

Group (Wager 1947; Nielsen et al. 1981). Sedimentological 

studies recognise different facies associations of late Aptian to 

late Paleocene age (Larsen, M. et al. 1999). The youngest part 

of the basin comprises interfingering Paleocene volcanic units. 

Based on stratigraphy, geochemistry and petrography, the lavas 

of the Blosseville Group have been divided into two main se-

ries: (1) a 2 km thick sequence of volcanic rocks that formed in a 

continental rift environment (Nielsen et al. 1981), and (2) a  6 

 km thick sequence of plateau basalts (Larsen, L.M. et al. 1989). 

Furthermore, the Blosseville Kyst is characterised by different 

generations of dykes and sills, partly related to the break-up and 

post-break-up history (Wager 1947; Hanghøj et al. 2003).

Southern East Greenland is a type example of a volcanic 

rifted margin (Geoffroy 2005). The geological evolution of 

the margin is interpreted as the result of a NE–SW-oriented 

Late Cretaceous rifting phase that led to the onset of oceanic 

spreading in the Late Paleocene – Early Eocene (c. 55 Ma) after 

a period of syn-rift continental tectonism and volcanism. The 

general south-east dip of the basalts, the presence of landward-

dipping normal faults and the coastal dyke swarm suggest a 

regional lithosphere flexure (Larsen, H.C. & Saunders 1998).

Sødalen region
Sødalen is an 8 km long, NW–SE-oriented, U-shaped glacial 

valley extending SE–NW up to the ‘Sødalengletscher’ (Fig. 

2A). The bedrock of the area is characterised by gneiss base-

ment, locally overlain by syn-rift sedimentary and volcanic 

rocks that form a monocline that dips south-eastwards. The 

late Paleocene syn-rift sedimentary rocks crop out along the 

western side of the valley; they are unconformably overlain by 

sedimentary rocks belonging to the Vandfaldsdalen Forma-
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Fig. 1. Simplified geological map of the Sødalen region in southern East 

Greenland.
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tion (Nielsen et al. 1981). The unconformity may be related 

to pre-volcanic uplift, coeval with the NE–SW-oriented rift-

ing, followed by a rapid subsidence that accommodated the 

volcanism (Larsen, M. et al. 1999). The continental break-

up is contemporaneous with the emplacement of layered gab-

bro bodies dated to c. 55 Ma, which formed at c. 2 km depth 

in the continental crust. The Skaergaard intrusion and the 

Miki Fjord macrodyke (Nielsen et al. 1981; Tegner et al. 

2008) are contemporaneous with the up to 6 km thick se-

quence of plateau basalts (Larsen, L.M. et al. 1989).

Structural data
A total of 350 measurements for structural analysis were col-

lected, from two sources: (1) from outcrops (metre scale) at 

five sites used for kinematic analysis and (2) from 3D photo- 

geology to evaluate strike and dip direction and cross-cutting 

relationships of faults and dykes using vertical aerial photo-

graphs (kilometre scale) and oblique photographs (100 m 

scale). A new tool for photogeology and mapping is developed 

and implemented at GEUS to collect geological features as 3D 

polylines with a descriptive GIS database suitable for 3D mod-

elling (Vosgerau et al. 2010).

Dykes – Three main generations of dykes are found in the 

area. Their relative ages can be established from cross-cutting 

relationships, which show that the oldest generation (D1) is 

mainly NE–SW-oriented, orthogonal to bedding or land-

ward-dipping; the trend is parallel to the Miki Fjord mac-

rodyke. The average trend of the second generation (D2) is 

ENE–WSW and these dykes are almost vertical (Fig. 2B). 

The third generation of dykes found in the area (D3) trends 

E–W (Fig. 2B).

Faults – Two main trends of fault traces, up to 2 km long, 

can be followed on the vertical aerial photographs (Fig. 2B). 

The oldest generation (F1) is characterised by ENE–WSW-

oriented normal faults. These faults are mainly landward-

dipping and are interpreted as flexure-related faults (Wager 

1947; Nielsen et al. 1981). At site 3 (Fig. 2A), the Miki Fjord 

macrodyke contact is downfaulted by a landward-dipping 

(F1) normal fault with an average vertical offset of 400 m. 

The youngest (F2) faults trend ESE–WNW. South-east of 

localities 2 and 4 (Fig. 2A), the fault traces are curved in pla-

nar view typical of strike-slip fault systems.

Kinematic analysis
Field data suitable for fault-slip analysis include measure-

ments of fault plane orientations, slip directions, senses of 

slip and bedding orientations. The slip direction of faults is 

determined using slickensides and calcite fibres on the fault 

plane. Sense of slip indicators include tails and scratches and 

crescentic marks formed by intersection of the fault plane 

with secondary fractures such as: R, R’, P and T (Petit 1987).

Data collected in the canyon at locality 2 (Fig. 2A) define 

the kinematics of a 120°-trending fault corresponding to a 

major left-lateral strike-slip fault that cuts the basalts. The 

fault zone is c. 50 m wide and contains a >50 cm thick cal-

cite vein. Double movement along the fault plane with well- 

developed dip-slip and strike-slip slickensides and calcite fi-

bres suggests a reactivation of the fault (Fig. 3). The estimated 

vertical offset, based on the tectonic contact between two 

stratigraphic markers, is around 250 m, whereas the horizon-

tal offset is estimated to 500 m. This results in a more than 

50–150 m wide, 120°-trending, rhomb-shaped fault zone, 

1  km long in map view (Fig. 2A, locality 2) and with a nega-

tive flower structure in cross-section. To the south-east, the 

fault trace disappears below an ice cap and to the north-west 

it is covered by the moraine in front of ‘Sødalengletscher’, 

but it is exposed on the western side of Sødalen, where a well- 

Facing page:

Fig. 2. Structural data analysis. A: Geological map of the Sødalen area 

(modified from Nielsen et al. 1981). Arrows show the direction of move-

ment along strike-slip faults; contour lines 100 m. B: Rose diagrams for 

orientation of faults and dykes. C: Lower hemisphere stereographic pro-

jection of faults grouped by kinematics; arrows show the slip vector. D: 

Palaeostress analysis of 92 fault-slip measurements. Black arrows indicate 

maximum horizontal shortening/extension; σ1, σ2, σ3 = principal axes of 

stress. Visualisation of the right dihedral method (red = pressure, blue = 

tension) shows planes that are likely to have been re-activated (the three 

diagrams to the right).

dip slipdip slip

strike-slipstrike-slipstrike-slip
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Fig. 3. Evidence of multiple re-activation of a fault testified by well-developed 

dip-slip and strike-slip slickensides on a fault plane (locality 2 in Fig. 2A).
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developed vertical cleavage, locally with strike-slip slicken-

sides, cross-cuts the Miki Fjord macrodyke.

At locality 5 (Fig. 2A), a 4 km long E–W-oriented dyke 

crosses Sødalen; it is an example of the latest dyke genera-

tion (D3). Slickensides are found on the chilled margins of 

the dyke, which show that both dip-slip and strike-slip move-

ments have taken place. The trend of the dykes, coupled with 

evidence of multiple reactivation of the contact, suggests a 

 relationship between strike-slip faults and dykes in which 

normal faults intruded by dykes were re-activated as left-

lateral faults in a NNE–SSW extensional regime associated 

with the ESE–WNW-trending shear-zone (Fig. 2A).

Palaeostress analysis
Palaeostress analysis of the heterogeneous fault-slip data set 

was performed using integrated software for structural anal-

ysis (Žalohar 2009). More than 90 fault-slip measurements 

were taken at five sites (localities 2A–C) and used for inver-

sion to obtain palaeostress values. The Gauss Method as-

sociated with visualisation of P&T dihedra (Žalohar 2009) 

distinguishes three superimposed tectonic phases in the area 

(Fig. 2D): (1) a phase with strike-slip regime and a 20–30°- 

trending maximum horizontal shortening interpreted as 

oblique rifting; (2) a phase with a SSE–NNW-trending 

maximum horizontal extension that corresponds to the 

coastal flexure and (3) a phase with strike-slip regime and 

a 95°-trending maximum horizontal shortening that caused 

the inversion and uplift of the entire area.

Conclusions
The structural data collected in Sødalen indicate the pres-

ence of strike-slip faults related to two tectonic events sepa-

rated in time by the coastal flexure. The youngest structures 

and dykes (phase 3; Fig. 2D) are associated with a NW–SE 

left-lateral shear zone that cross-cuts the Paleocene rift and 

the structures related to the coastal flexure of the continental 

margin (phase 2). The evidence of dyke intrusions related to 

N–S extension compatible with the strike-slip tectonic re-

gime of phase 3, suggests a coexistence of the two phenomena 

as a superficial expression of deep-seated crustal structures. 

The oldest structures and dykes of phase 1 show a maximum 

horizontal extension coherent with the trend of the Miki 

Fjord macrodyke. This strike-slip tectonic regime could be 

related to an oblique rifting stage in Paleocene time. Finally, 

the accuracy of the 3D photogeological tool is tested over 

a range of kilometre to metre scale (Fig. 2B) showing the 

power of this method developed at the Survey.
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