LA-ICP-MS laboratorium

LA-ICP-MS (”Laser Ablation Inductively Coupled Plasma Mass Spectrometry”) laboratoriet på GEUS er designet til at udføre forskellige former for isotop-analyser som anvendes i geologi og naturvidenskab. Fokus er på analyser der bruges til geologisk aldersdatering vha. U-Th-Pb geokrononologi og til bestemmelse af indholdet af grundstoffer i en lang række forskellige, primært naturlige, materialer.

Typer af analyser

LA ICP-MS laboratoriet udfører primært U-Th-Pb aldersbestemmelse af accessoriske mineraler samt sporelementanalyser af mineralkorn og bjergarter:

Geologisk aldersbestemmelse af zirkoner udføres rutinemæssigt ifm. sediment-provenansstudier, datering af dannelsen for magmatiske og metamorfe bjergarter, i tektonisk og strukturgeologisk regi, samt til bestemmelse af malmgenese. Analyser udføres typisk vha. separerede mineral-korn eller in-situ fra polerede tyndslib, tykslib eller mounts med indkapslet og poleret materiale.

undefined

Laser ablation hul i en zircon krystal

Zirkoner registrerer ikke nødvendigvis alle episoder som mineralet har gennemgået i sin levetid. Derfor er aldersdatering af andre accessoriske mineraler end zirkon vigtig for at forstå de geologiske processer, som er foregået men som ikke registreret af zirkonerne. Dette kan fx være metamorfe eller hydrothermale begivenheder eller oprindelsen af sedimenter fra forskellige metamorfe terræner o.l. Vi tilbyder U-Th-Pb-datering af følgende mineraler:

  •          Zircon
  •          Rutil
  •          Titanit
  •          Baddeleyit
  •          Apatit
  •          Monazit
  •          Xenotim
  •          Allanit

Analyse af andre mineraler som fx Eudialyt, Steenstrupin, Uraninit, Perovskit m.v. udføres også, men ikke rutinemæssigt. Analyser udføres pr. anmodning og inkluderer et (enkeltfase-datering) eller flere (multifase-datering) af ovennævnte mineraler. Henvendelse til laboratoriet for yderligere information. Vi er altid åbne over for henvendelser vedrørende aldersdatering af andre mineraler end de her nævnte.

Mineraler som kan dateres vha. U-Th-Pb metoden (se overfor) indeholder også sporelementer som kan bidrage med viden om de dannelsesforhold og evt. omdannelser som mineralet/bjergarten har gennemgået. En analyse hvor både den geologiske alder og sporelementindholdet bestemmes fra det selvsamme analysepunkt giver mulighed for at sammenstille alderen med de kemiske parametre for mineralet og derved få en mere nøjagtig rumlig fortolkning af de opnåede resultater.

Laboratoriet udfører rutinemæssigt bestemmelse af elementindholdet i mineraler og bjergarter (typisk er det sporelementer og visse hovedelementer der måles). Vi er specialiseret i analyse af naturligt forekommende uorganiske materialer, såsom:

  • Mineraler
  • Bjergarter
  • Ædelsten, smykkesten (fx rubiner, safirer o.l.)
  • Biologiske materialer såsom otolitter, skæl, skaller, tænder og horn)
  • Visse syntetiske materialer såsom glas og sammenpressede pulvertabletter af uorganisk materiale.
  • Arkæologiske prøver (fx stenøkser, keramik)

Principielt er det muligt at analysere næsten alle faste materiale med LA-ICP-MS, dog udføres analyser af fx metaller herunder sulfidmineraler, maling og plastic, blødt væv, hår og lignende materialer ikke rutinemæssigt på GEUS.

NB: Til bestemmelse af elementkoncentrationer benyttes der en intern standard, som typisk er et hovedelement med en kendt koncentration (fx Si, Ca, Mg eller lignende) der er repræsentativ for det pågældende materiale som skal analyseres. Dvs. for at kvantificere data er det nødvendigt før LA-ICP-MS analysen at bestemme mindst ét større (hoved)element, hvilket typisk foregår via elektron mikrosonde analyse (EPMA), SEM, XRF eller lignende metoder, eller alternativt kan estimeres.

undefined

Optisk foto af poleret otolit med koncentriske vækstzoner. 

Når mineraler krystallierer, bliver væske (eller smelte) ofte indfanget som mikrometer-store inklusioner i mineralerne. Sådanne inklusioner er en vigtig og direkte kilde til viden om de geokemiske dannelsesforhold, fx sen-stadie magmakrystallisation, væske-flow i skorpen, eller hydrothermale transportprocesser i forbindelse med malmgenese, og kan analyseres med LA-ICP-MS for grundstofindholdet. Metoder til væskeinklusionsanalyse er etableret i laboratoriet, men vi er altid åben for nye procedurer til kvantitative kemiske analyser af væske- og smelte-inklusioner.

undefined

Udstyr til mikrotermometrisk analyse af væskeindeslutninger

Inden LA-ICP-MS analysen har prøverne typisk gennemgået mikroteksturel og mikrotermometrisk analyse for at bestemme de interne aldersrelationer imellem evt. flere generationer af væskeinklusioner, og for at bestemme dannelsestemperaturen, saltindholdet i væskeinklusionerne samt sammensætningen af væske, gas, salt og krystalliseret materiale (fx smelte) i inklusionerne.

undefined

Klassifikation af væskeinklusioner (efter Fall et al. 2011).

FORMÅL OG NØGLEINSTRUKMENTER

LA-ICP-MS laboratoriet har til formål at:

  • Tilbyde forskere, firmaer, studerende og organisationer ekspertise og instrumenter til at løse problemer inden for geovidenskab og andre disclipliner.
  • Udvikle nye anvendelsesområder indenfor laser ablation ICP massespektrometri til videnskablig grundforskning og anvendt videnskab.
  • Give forskere og studerende mulighed for at opnå “hands-on” erfaring med LA-ICP-MS analyseteknikker mens data bliver indsamlet.

LA-ICP-MS laboratoriet inkluderer et Element 2 single-collector magnetic sector field inductively coupled plasma massespektrometer (SF-ICP-MS) fra Thermo-Fisher Scientific, som er forbundet med et af vores to laser ablation systemer (NWR213 og UP213 fra Elemental Laser Systems).

Analyse-kompetencer:

Det er muligt at udføre kvantitative analyse for de fleste elementer fra 7Li til 238U.
Med en rumlig opløsning på 15-150 µm kan sporlemeneter bestemmes til lave ppm-niveauer for de fleste faste materialer.
Detektionsgrænser fra ppb til få ppm skala.
Laserstråle-diameter imellem 5 og 150 µm

undefined

NWR213 laser ablation udstyr til in-situ LA-ICP-MS analyse

PRØVEFORBEREDELSE TIL LA-ICP-MS-ANALYSE

GEUS’ laboratorietekniske personale. Har mange års erfaring med prøveforberedelse i vores præparationslaboratorium, og kan tilrettelægge og varetage alle nødvendige procedurer fra knusning af bjergartsmateriale til fremstilling og polering af epoxyindstøbninger. Separation af mineralkorn udføres vha. vand-rystebord, tungvæske separation, Frantz elektromagnetisk separator samt mineralkorn-udvælgelse via mikroskop. Eksterne brugere kan medbringe forberedte prøver (kontakt vores medarbejdere for yderligere information). Skanning-elektronmikroskopi vha. GEUS’ SEM laboratorie samt optisk mikroskopi er en typisk integreret del af prøveforberedelserne til LA-ICP-MS analyse, og foretages i de dertil indrettede laboratorier.

En række muligheder tilbydes med hensyn til størrelse og form af prøvematerialet, herunder petrografiske tynd- eller tykslib til in-situ analyse, mens separerede mineralkorn typisk indstøbes i runde 1” epoxy mounts.

Typiske prøvestørrelser som anvendes er:

  • Runde epoxy mounts med en diameter på 10, 25 (1”), 30 og 40 mm
  • Tyndslib og tykslib i standardstørrelse (fx 20x30 mm), alternativt andre
  • Prøver med anden størrelse eller form på <80 mm kan eventuelt tilpasses. Henvendelse til laboratoriet for yderligere information.

Materialer til analyse skal være tørre, rene og fri for enhver form for belægning (fx kulstof, guld o.l.). Kulstofbelægning fra tidligere elektron mikrosonde-analyse skal fjernes. Guldbelægning skal fjernes omhyggeligt, da rester fra guldbelægning kan påvirke data kvaliteten betragteligt.

Vi anbefaler at polere overfladen af prøvematerialet. Prøver behøver ikke at være polerede, men kvaliteten af data forbedres betydeligt med en bedre polering.

Mikroskopet på laser ablation-instrumentet er knapt så godt som de mikroskoper man formentlig er vant til. Det kan derfor være vanskeligt og tidkrævende at lokalisere specifikke analysepunkter, især på polerede slib og ifm. analyse af væskeinklusioner. Det anbefales derfor, at brugere i forbindelse med analyse medbringer ”referencekort” over de enkelte prøver, dvs. billeder som hjælper manøvreringen på overfladen af prøven. I tillæg til CL, BSE, o.l. billeder er det tit nødvendigt også at have optiske mikroskopi fotos eller tilsvarende. Eventuelle markeringer med tusch bør påføres den underste del (dvs. glassiden) af slibene, idet prøven typisk renses med sprit før analysen.

Vi har software til datareduktion for alle typer LA-ICP-MS-analyser som udføres i laboratoriet. Eksterne brugere har mulighed for selv at udføre analytisk arbejde og efterfølgende datareduktion efter oplæring hos vores erfarne laboratoriemedarbejdere.

NUVÆRENDE OG TIDLIGERE PROJEKTSAMARBEJDER

Publikationslisten herunder er en ufuldstændig oversigt over publikationer (artikler, rapporter o.l.) hvor LA-ICP-MS laboratoriet på GEUS typisk ifm. samarbejdsprojekter har bidraget med data på forskellig vis:

  •          Zirkon aldersdatering – proveniens
  •          Zirkon aldersdatering – magmatisk og metamorf og petrologi
  •          Multi-mineral U-Th-Pb aldersdatering
  •          Kombineret aldersdatering og sporelementsbestemmelse
  •          Elementkoncentration – mineraler og bjergarter
  •          Elementkoncentration – proveniens (Kfsp, Qtz)
  •          Ædelsten, smykkesten
  •          Otolitter og andre biologiske materialer
  •          Syntetiske materialer (glas, forbrændingsprodukter m.v.)
  •          Arkæologiske prøver (jadeit-stenøkser, keramik)

PUBLIKATIONER FRA PROJEKTSAMARBEJDER

Petrology and mineralogy:

  • Baden, K., Bagas, L., Kolb, J., Thomsen, T.B., Waight, T.E., 2018. The Amitsoq Plutonic Suite - a newly discovered suite in the Ketilidian Orogen. Presented at the 33rd Nordic Geological winter Meeting, 33rd Nordic Geological Winter Meeting abstracts, p. 102.
  • Baden, K., Kolb, J., Thomsen, T.B., 2014. Dating a gold-bearing hydrothermal event, in the Paleoproterozoic Tasiilaq area, Nagssugtoqidian Orogen, SouthEast Greenland. Presented at the 31st Nordic Geological Winter Meeting, 31st Nordic Geological Winter Meeting abstracts, p. 51.
  • Berger, A., Kokfelt, T.F., Kolb, J., 2014. Exhumation rates in the Archean from pressure–time paths: Example from the Skjoldungen Orogen (SE Greenland). Precambrian Research 255, 774–790. https://doi.org/10.1016/j.precamres.2014.04.011
  • Cornell, D.H., Pettersson, A., Whitehouse, M.J., Schersten, A., 2009. A New Chronostratigraphic Paradigm for the Age and Tectonic History of the Mesoproterozoic Bushmanland Ore District, South Africa. Economic Geology 104, 385–404. https://doi.org/10.2113/gsecongeo.104.3.385
  • de Souza, Z.S., Kalsbeek, F., Deng, X.-D., Frei, R., Kokfelt, T.F., Dantas, E.L., Li, J.-W., Pimentel, M.M., Galindo, A.C., 2016. Generation of continental crust in the northern part of the Borborema Province, northeastern Brazil, from Archaean to Neoproterozoic. Journal of South American Earth Sciences 68, 68–96. https://doi.org/10.1016/j.jsames.2015.10.006
  • Doe, M.F., Jones, J.V., Karlstrom, K.E., Thrane, K., Frei, D., Gehrels, G., Pecha, M., 2012. Basin formation near the end of the 1.60–1.45 Ga tectonic gap in southern Laurentia: Mesoproterozoic Hess Canyon Group of Arizona and implications for ca. 1.5 Ga supercontinent configurations. Lithosphere 4, 77–88. https://doi.org/10.1130/L160.1
  • Dyck, B., Reno, B.L., Kokfelt, T.F., 2015. The Majorqaq Belt: A record of Neoarchaean orogenesis during final assembly of the North Atlantic Craton, southern West Greenland. Lithos 220–223, 253–271. https://doi.org/10.1016/j.lithos.2015.01.024
  • Dziggel, A., Kokfelt, T.F., Kolb, J., Kisters, A.F.M., Reifenröther, R., 2017. Tectonic switches and the exhumation of deep-crustal granulites during Neoarchean terrane accretion in the area around Grædefjord, SW Greenland. Precambrian Research 300, 223–245. https://doi.org/10.1016/j.precamres.2017.07.027
  • Ekwueme, B., Kalsbeek, F., 2015. U-Pb geochronology of metasedimentary schists in Akwanga area of north central Nigeria and its implications for the evolution of the Nigerian basement complex. Global Journal of Geological Sciences 12, 21. https://doi.org/10.4314/gjgs.v12i1.3
  • Frei, D., Gerdes, A., 2009. Precise and accurate in situ U–Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS. Chemical Geology 261, 261–270. https://doi.org/10.1016/j.chemgeo.2008.07.025
  • Frei, D., Hollis, J.A., Gerdes, A., Harlov, D., Karlsson, C., Vasquez, P., Franz, G., Johansson, L., Knudsen, C., 2006. Advanced in situ geochronological and trace element microanalysis by laser ablation techniques. Geological survey of Denmark and Greenland bulletin 10, 25–28, ISSN:1604-8156.
  • Gaucher, C., Frei, R., Chemale, F., Frei, D., Bossi, J., Martínez, G., Chiglino, L., Cernuschi, F., 2011. Mesoproterozoic evolution of the Río de la Plata Craton in Uruguay: at the heart of Rodinia? International Journal of Earth Sciences 100, 273–288. https://doi.org/10.1007/s00531-010-0562-x
  • Hennig, D., Lehmann, B., Frei, D., Belyatsky, B., Zhao, X.F., Cabral, A.R., Zeng, P.S., Zhou, M.F., Schmidt, K., 2009. Early Permian seafloor to continental arc magmatism in the eastern Paleo-Tethys: U–Pb age and Nd–Sr isotope data from the southern Lancangjiang zone, Yunnan, China. Lithos 113, 408–422. https://doi.org/10.1016/j.lithos.2009.04.031
  • Hollis, J.A., Frei, D., Gool, J.A.M. van, 2006. Using zircon geochronology to resolve the Archaean geology of southern West Greenland. Geological survey of Denmark and Greenland Bulletin 10, 49–52, ISSN:1604-8156.
  • Kalsbeek, F., Affaton, P., Ekwueme, B., Frei, R., Thrane, K., 2012. Geochronology of granitoid and metasedimentary rocks from Togo and Benin, West Africa: Comparisons with NE Brazil. Precambrian Research 196–197, 218–233. https://doi.org/10.1016/j.precamres.2011.12.006
  • Keulen, N., Næraa, T., Kokfelt, T.F., Schumacher, J.C., Scherstén, A., 2010. Zircon record of the igneous and metamorphic history of the Fiskenæsset anorthosite complex in southern West Greenland. Geological Survey of Denmark and Greenland Bulletin 20, 67–70, ISSN:1604-8156.
  • Keulen, N., Schumacher, J.C., Næraa, T., Kokfelt, T.F., Scherstén, A., Szilas, K., van Hinsberg, V.J., Schlatter, D.M., Windley, B.F., 2014. Meso- and Neoarchaean geological history of the Bjørnesund and Ravns Storø Supracrustal Belts, southern West Greenland: Settings for gold enrichment and corundum formation. Precambrian Research 254, 36–58. https://doi.org/10.1016/j.precamres.2014.07.023
  • Klausen, M.B., Szilas, K., Kokfelt, T.F., Keulen, N., Schumacher, J.C., Berger, A., 2017. Tholeiitic to calc-alkaline metavolcanic transition in the Archean Nigerlikasik Supracrustal Belt, SW Greenland. Precambrian Research 302, 50–73. https://doi.org/10.1016/j.precamres.2017.09.014
  • Knudsen, C., Gool, J.A.M. van, Østergaard, C., Hollis, J.A., Rink-Jørgensen, M., Persson, M., Szilas, K., 2007. Gold-hosting supracrustal rocks on Storø, southern West Greenland: lithologies and geological environment. Geological survey of Denmark and Greenland Bulletin 13, 41–44, ISSN:1604-8156.
  • Kokfelt, T.F., Næraa, T., Thrane, K., Bagas, L., 2016. New zircon U-Pb and Hf isotopic constraints on the crustal evolution of the Skjoldungen region, South-East Greenland. Geological Survey of Denmark and Greenland Bulletin 35, 55–58, ISSN:1604-8156.
  • Köksal, S., Möller, A., Göncüoglu, M.C., Frei, D., Gerdes, A., 2012. Crustal homogenization revealed by U–Pb zircon ages and Hf isotope evidence from the Late Cretaceous granitoids of the Agaçören intrusive suite (Central Anatolia/Turkey). Contributions to Mineralogy and Petrology 163, 725–743. https://doi.org/10.1007/s00410-011-0696-2
  • Köksal, S., Toksoy-Köksal, F., Göncüoğlu, M.C., Möller, A., Gerdes, A., Frei, D., 2013. Crustal source of the Late Cretaceous Satansarı monzonite stock (central Anatolia – Turkey) and its significance for the Alpine geodynamic evolution. Journal of Geodynamics 65, 82–93. https://doi.org/10.1016/j.jog.2012.06.003
  • Kolb, J., Kokfelt, T.F., Dziggel, A., 2012. Geodynamic setting and deformation history of an Archaean terrane at mid-crustal level: The Tasiusarsuaq terrane of southern West Greenland. Precambrian Research 212–213, 34–56. https://doi.org/10.1016/j.precamres.2012.04.010
  • Lebrun, E., Árting, T.B., Kolb, J., Fiorentini, M., Kokfelt, T., Johannesen, A.B., Maas, R., Thébaud, N., Martin, L.A.J., Murphy, R.C., 2018. Genesis of the Paleoproterozoic Ammassalik Intrusive Complex, south-east Greenland. Precambrian Research 315, 19–44. https://doi.org/10.1016/j.precamres.2018.06.016
  • Meinhold, G., Kostopoulos, D., Frei, D., Himmerkus, F., Reischmann, T., 2010a. U–Pb LA-SF-ICP-MS zircon geochronology of the Serbo-Macedonian Massif, Greece: palaeotectonic constraints for Gondwana-derived terranes in the Eastern Mediterranean. International Journal of Earth Sciences 99, 813–832. https://doi.org/10.1007/s00531-009-0425-5
  • Meinhold, G., Reischmann, T., Kostopoulos, D., Frei, D., Larionov, A.N., 2010b. Mineral chemical and geochronological constraints on the age and provenance of the eastern Circum-Rhodope Belt low-grade metasedimentary rocks, NE Greece. Sedimentary Geology 229, 207–223. https://doi.org/10.1016/j.sedgeo.2010.06.007
  • Müller, S., Dziggel, A., Sindern, S., Kokfelt, T.F., Gerdes, A., Kolb, J., 2018. Age and temperature-time evolution of retrogressed eclogite-facies rocks in the Paleoproterozoic Nagssugtoqidian Orogen, South-East Greenland: Constrained from U-Pb dating of zircon, monazite, titanite and rutile. Precambrian Research 314, 468–486. https://doi.org/10.1016/j.precamres.2018.07.002
  • Næraa, T., Scherstén, A., 2008. New zircon ages from the Tasiusarsuaq terrane, southern West Greenland. Geological survey of Denmark and Greenland Bulletin 15, 73–76, ISSN:1604-8156.
  • Næraa, T., Scherstén, A., Rosing, M.T., Kemp, A.I.S., Hoffmann, J.E., Kokfelt, T.F., Whitehouse, M.J., 2012. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago. Nature 485, 627–630. https://doi.org/10.1038/nature11140
  • Nasdala, L., Hofmeister, W., Norberg, N., Martinson, J.M., Corfu, F., Dörr, W., Kamo, S.L., Kennedy, A.K., Kronz, A., Reiners, P.W., Frei, D., Kosler, J., Wan, Y., Götze, J., Häger, T., Kröner, A., Valley, J.W., 2008. Zircon M257 - a Homogeneous Natural Reference Material for the Ion Microprobe U-Pb Analysis of Zircon. Geostandards and Geoanalytical Research 32, 247–265. https://doi.org/10.1111/j.1751-908X.2008.00914.x
  • Nielsen, L.S., Rosing, M., Kokfelt, T.F., Thomsen, T.B., 2014. Rutile and Zircon Geochronology and Geochemistry of Banded Rocks from the Isua Supracrustal Belt, SW Greenland. Presented at the 31st Nordic Geological Winter Meeting, 31st Nordic Geological Winter Meeting abstracts, p. 91.
  • Pamoukaghlián, K., Gaucher, C., Frei, R., Poiré, D.G., Chemale, F., Frei, D., Will, T.M., 2017. U-Pb age constraints for the La Tuna Granite and Montevideo Formation (Paleoproterozoic, Uruguay): Unravelling the structure of the Río de la Plata Craton. Journal of South American Earth Sciences 79, 443–458. https://doi.org/10.1016/j.jsames.2017.09.004
  • Polat, A., Appel, P.W.U., Frei, R., Pan, Y., Dilek, Y., Ordóñez-Calderón, J.C., Fryer, B., Hollis, J.A., Raith, J.G., 2007. Field and geochemical characteristics of the Mesoarchean (∼3075Ma) Ivisaartoq greenstone belt, southern West Greenland: Evidence for seafloor hydrothermal alteration in supra-subduction oceanic crust. Gondwana Research 11, 69–91. https://doi.org/10.1016/j.gr.2006.02.004
  • Polat, A., Kokfelt, T., Burke, K.C., Kusky, T.M., Bradley, D.C., Dziggel, A., Kolb, J., 2016. Lithological, structural, and geochemical characteristics of the Mesoarchean Târtoq greenstone belt, southern West Greenland, and the Chugach – Prince William accretionary complex, southern Alaska: evidence for uniformitarian plate-tectonic processes. Canadian Journal of Earth Sciences 53, 1336–1371. https://doi.org/10.1139/cjes-2016-0023
  • Poulsen, M.D., Keulen, N., Hinsberg, V.J. van, Kolb, J., Vennemann, T., 2018. Controls on element exchange in ultramafic-hosted plumasite-type corundum, South-East Greenland. Presented at the Goldschmidt, Goldschmidt abstracts.
  • Rosa, D., Majka, J., Thrane, K., Guarnieri, P., 2016. Evidence for Timanian-age basement rocks in North Greenland as documented through U-Pb zircon dating of igneous xenoliths from the Midtkap volcanic centers. Precambrian Research 275, 394–405. https://doi.org/10.1016/j.precamres.2016.01.005
  • Steenfelt, A., Hollis, J.A., Secher, K., 2006. The Tikiusaaq carbonatite: A new Mesozoic intrusive complex in southern West Greenland. Geological survey of Denmark and Greenland bulletin 10, 41–44, ISSN:1604-8156.
  • Stockmann, G., Karlsson, A., Lewerentz, A., Thomsen, T.B., Kokfelt, T.F., Tollefsen, E., Sturkell, E., Lundqvist, L., 2018. New Rb-Sr and Zircon U-Pb dating of the Grønnedal-Íka igneous complex, SW Greenland. Presented at the 33rd Nordic Geological Winter Meeting, 33rd Nordic Geological Winter Meeting abstracts, p. 38.
  • Szilas, K., Elis Hoffmann, J., Scherstén, A., Rosing, M.T., Windley, B.F., Kokfelt, T.F., Keulen, N., van Hinsberg, V.J., Næraa, T., Frei, R., Münker, C., 2012. Complex calc-alkaline volcanism recorded in Mesoarchaean supracrustal belts north of Frederikshåb Isblink, southern West Greenland: Implications for subduction zone processes in the early Earth. Precambrian Research 208–211, 90–123. https://doi.org/10.1016/j.precamres.2012.03.013
  • Szilas, K., Van Hinsberg, V.J., Kisters, A.F.M., Hoffmann, J.E., Windley, B.F., Kokfelt, T.F., Scherstén, A., Frei, R., Rosing, M.T., Münker, C., 2013. Remnants of arc-related Mesoarchaean oceanic crust in the Tartoq Group of SW Greenland. Gondwana Research 23, 436–451. https://doi.org/10.1016/j.gr.2011.11.006
  • Thomsen, T.B., Heijboer, T., Guarnieri, P., 2016. jAgeDisplay: software for evaluation of data distributions in U-Th-Pb geochronology. Geological Survey of Denmark and Greenland Bulletin 35, 103–106, ISSN:1604-8156.
  • Van Schijndel, V., Cornell, D.H., Hoffmann, K.-H., Frei, D., 2011. Three episodes of crustal development in the Rehoboth Province, Namibia. Geological Society, London, Special Publications 357, 27–47. https://doi.org/10.1144/SP357.3
  • Waight, T.E., Serre, S.H., Næsby, S., Thomsen, T.B., 2017. The ongoing search for Denmark’s oldest rock: new U-Pb zircon ages for a quartz-rich xenolith and country rock from the Svaneke Granite. Bulletin of the Geological Society of Denmark 65, 75–86, ISSN: 2245-7070.
  • Zhang, W., Pease, V., Meng, Q., Zheng, R., Thomsen, T.B., Wohlgemuth-Ueberwasser, C., Wu, T., 2016. Discovery of a Neoproterozoic granite in the Northern Alxa region, NW China: its age, petrogenesis and tectonic significance. Geological Magazine 153, 512–523. https://doi.org/10.1017/S0016756815000631
  • Zhang, W., Pease, V., Meng, Q., Zheng, R., Thomsen, T.B., Wohlgemuth-Ueberwasser, C., Wu, T., 2015. Timing, petrogenesis, and setting of granites from the southern Beishan late Palaeozoic granitic belt, Northwest China and implications for their tectonic evolution. International Geology Review 57, 1975–1991. https://doi.org/10.1080/00206814.2015.1045944

Sedimentary provenance:

  • Affaton, P., Kalsbeek, F., Boudzoumou, F., Trompette, R., Thrane, K., Frei, R., 2016. The Pan-African West Congo belt in the Republic of Congo (Congo Brazzaville): Stratigraphy of the Mayombe and West Congo Supergroups studied by detrital zircon geochronology. Precambrian Research 272, 185–202. https://doi.org/10.1016/j.precamres.2015.10.020
  • Be’eri-Shlevin, Y., Gee, D., Claesson, S., Ladenberger, A., Majka, J., Kirkland, C., Robinson, P., Frei, D., 2011. Provenance of Neoproterozoic sediments in the Särv nappes (Middle Allochthon) of the Scandinavian Caledonides: LA-ICP-MS and SIMS U–Pb dating of detrital zircons. Precambrian Research 187, 181–200. https://doi.org/10.1016/j.precamres.2011.03.007
  • Ershova, V., Prokopiev, A., Andersen, T., Khudoley, A., Kullerud, K., Thomsen, T.B., 2018. U–Pb and Hf isotope analysis of detrital zircons from Devonian–Permian strata of Kotel’ny Island (New Siberian Islands, Russian Eastern Arctic): Insights into the Middle–Late Paleozoic evolution of the Arctic. Journal of Geodynamics. https://doi.org/10.1016/j.jog.2018.02.008
  • Ershova, V.B., Lorenz, H., Prokopiev, A.V., Sobolev, N.N., Khudoley, A.K., Petrov, E.O., Estrada, S., Sergeev, S., Larionov, A., Thomsen, T.B., 2016. The De Long Islands: A missing link in unraveling the Paleozoic paleogeography of the Arctic. Gondwana Research 35, 305–322. https://doi.org/10.1016/j.gr.2015.05.016
  • Frei, D., Gerdes, A., 2009. Precise and accurate in situ U–Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS. Chemical Geology 261, 261–270. https://doi.org/10.1016/j.chemgeo.2008.07.025
  • Frei, D., Hollis, J.A., Gerdes, A., Harlov, D., Karlsson, C., Vasquez, P., Franz, G., Johansson, L., Knudsen, C., 2006. Advanced in situ geochronological and trace element microanalysis by laser ablation techniques. Geological survey of Denmark and Greenland bulletin 10, 25–28, ISSN:1604-8156.
  • Fyhn, M.B.W., Green, P.F., Bergman, S.C., Van Itterbeeck, J., Tri, T.V., Dien, P.T., Abatzis, I., Thomsen, T.B., Chea, S., Pedersen, S.A.S., Mai, L.C., Tuan, H.A., Nielsen, L.H., 2016. Cenozoic deformation and exhumation of the Kampot Fold Belt and implications for south Indochina tectonics: DEFORMATION OF THE KAMPOT FOLD BELT. Journal of Geophysical Research: Solid Earth 121, 5278–5307. https://doi.org/10.1002/2016JB012847
  • Gee, D.G., Ladenberger, A., Dahlqvist, P., Majka, J., Be’eri-Shlevin, Y., Frei, D., Thomsen, T., 2014. The Baltoscandian margin detrital zircon signatures of the central Scandes. Geological Society, London, Special Publications 390, 131–155. https://doi.org/10.1144/SP390.20
  • Hennig, D., Lehmann, B., Frei, D., Belyatsky, B., Zhao, X.F., Cabral, A.R., Zeng, P.S., Zhou, M.F., Schmidt, K., 2009. Early Permian seafloor to continental arc magmatism in the eastern Paleo-Tethys: U–Pb age and Nd–Sr isotope data from the southern Lancangjiang zone, Yunnan, China. Lithos 113, 408–422. https://doi.org/10.1016/j.lithos.2009.04.031
  • Jones III, J.V., Daniel, C.G., Frei, D., Thrane, K., 2011. Revised regional correlations and tectonic implications of Paleoproterozoic and Mesoproterozoic metasedimentary rocks in northern New Mexico, USA: New findings from detrital zircon studies of the Hondo Group, Vadito Group, and Marqueñas Formation. Geosphere 7, 974–991. https://doi.org/10.1130/GES00614.1
  • Kalsbeek, F., Ekwueme, B.N., Penaye, J., de Souza, Z.S., Thrane, K., 2013. Recognition of Early and Late Neoproterozoic supracrustal units in West Africa and North-East Brazil from detrital zircon geochronology. Precambrian Research 226, 105–115. https://doi.org/10.1016/j.precamres.2012.12.006
  • Kalsbeek, F., Frei, D., Affaton, P., 2008. Constraints on provenance, stratigraphic correlation and structural context of the Volta basin, Ghana, from detrital zircon geochronology: An Amazonian connection? Sedimentary Geology 212, 86–95. https://doi.org/10.1016/j.sedgeo.2008.10.005
  • Knudsen, C., Frei, D., Rasmussen, T., Rasmussen, E.S., McLimans, R., 2005. New methods in provenance studies based on heavy minerals: an example from Miocene sands in Jylland, Denmark. Geological survey of Denmark and Greenland bulletin 7, 29–32, ISSN:1604-8156.
  • Knudsen, C., Hopper, J.R., Bierman, P.R., Bjerager, M., Funck, T., Green, P.F., Ineson, J.R., Japsen, P., Marcussen, C., Sherlock, S.C., Thomsen, T.B., 2018. Samples from the Lomonosov Ridge place new constraints on the geological evolution of the Arctic Ocean. Geological Society, London, Special Publications 460, 397–418. https://doi.org/10.1144/SP460.17
  • Knudsen, C., Thomsen, T.B., 2015. Composition of ilmenite and provenance of zircon in northern Brazil. Geological survey of Denmark and Greenland bulletin 33, 81–84, ISSN:1604-8156.
  • Ladenberger, A., Stefan, B., Kumpulainen, R., Morris, G., Hellström, F., Thomsen, T.B., Lynch, E.P., Vesturklett, H., 2018. Provenance of Paleoproterozoic clastic metasedimentary rocks in Norrbotten, northern Sweden. Presented at the 33rd Nordic Geological Winter Meeting, 33rd Nordic Geological Winter Meeting abstracts, p. 57.
  • Larsen, M., Christian, K., Frei, D., Frei, M., Rasmussen, T., Whitham, A.G., 2006. East Greenland and Faroe-Shetland sediment provenance and Palaeogene sand dispersal systems. Geological survey of Denmark and Greenland bulletin 10, 29–32, ISSN:1604-8156.
  • Mattias, L., Kristoffersen, M., Thomsen, T.B., Gillhespy, L., Gabrielsen, R., 2014. Revealing hidden parts of the Caledonian orogen by provenance analysis of Mesozoic sandstones. Presented at the 31st Nordic Geological Winter Meeting, 31st Nordic Geological Winter Meeting abstracts.
  • Meinhold, G., Frei, D., 2008. Detrital zircon ages from the islands of Inousses and Psara, Aegean Sea, Greece: constraints on depositional age and provenance. Geological Magazine 145. https://doi.org/10.1017/S0016756808005505
  • Meinhold, G., Kostopoulos, D., Reischmann, T., Frei, D., BouDagher-Fadel, M.K., 2009. Geochemistry, provenance and stratigraphic age of metasedimentary rocks from the eastern Vardar suture zone, northern Greece. Palaeogeography, Palaeoclimatology, Palaeoecology 277, 199–225. https://doi.org/10.1016/j.palaeo.2009.04.005
  • Meinhold, G., Morton, A.C., Fanning, C.M., Frei, D., Howard, J.P., Phillips, R.J., Strogen, D., Whitham, A.G., 2011. Evidence from detrital zircons for recycling of Mesoproterozoic and Neoproterozoic crust recorded in Paleozoic and Mesozoic sandstones of southern Libya. Earth and Planetary Science Letters 312, 164–175. https://doi.org/10.1016/j.epsl.2011.09.056
  • Mikes, T., Baresel, B., Kronz, A., Frei, D., Dunkl, I., Tolosana-Delgado, R., von Eynatten, H., 2009. Jurassic granitoid magmatism in the Dinaride Neotethys: geochronological constraints from detrital minerals. Terra Nova 21, 495–506. https://doi.org/10.1111/j.1365-3121.2009.00907.x
  • Mikes, T., Christ, D., Petri, R., Dunkl, I., Frei, D., Báldi-Beke, M., Reitner, J., Wemmer, K., Hrvatović, H., von Eynatten, H., 2008. Provenance of the Bosnian Flysch. Swiss Journal of Geosciences 101, 31–54. https://doi.org/10.1007/s00015-008-1291-z
  • Moghadam, H.S., Li, X.-H., Griffin, W.L., Stern, R.J., Thomsen, T.B., Meinhold, G., Aharipour, R., O’Reilly, S.Y., 2017. Early Paleozoic tectonic reconstruction of Iran: Tales from detrital zircon geochronology. Lithos 268–271, 87–101. https://doi.org/10.1016/j.lithos.2016.09.008
  • Olivarius, M., Friis, H., Kokfelt, T.F., Wilson, R., 2015. Proterozoic basement and Palaeozoic sediments in the Ringkøbing–Fyn High characterized by zircon U–Pb ages and heavy minerals from Danish onshore wells. Bulletin of the Geological Society of Denmark 63, 29–44, ISSN: 2245-7070.
  • Olivarius, M., Rasmussen, E.S., Siersma, V., Knudsen, C., Kokfelt, T.F., Keulen, N., 2014. Provenance signal variations caused by facies and tectonics: Zircon age and heavy mineral evidence from Miocene sand in the north-eastern North Sea Basin. Marine and Petroleum Geology 49, 1–14. https://doi.org/10.1016/j.marpetgeo.2013.09.010
  • Olivarius, M., Weibel, R., Friis, H., Boldreel, L.O., Keulen, N., Thomsen, T.B., 2017. Provenance of the Lower Triassic Bunter Sandstone Formation: implications for distribution and architecture of aeolian vs. fluvial reservoirs in the North German Basin. Basin Research 29, 113–130. https://doi.org/10.1111/bre.12140
  • Petersen, T.G., Thomsen, T.B., Olaussen, S., Stemmerik, L., 2016. Provenance shifts in an evolving Eurekan foreland basin: the Tertiary Central Basin, Spitsbergen. Journal of the Geological Society 173, 634–648. https://doi.org/10.1144/jgs2015-076
  • Pettersson, C.H., Pease, V., Frei, D., 2010. Detrital zircon U–Pb ages of Silurian–Devonian sediments from NW Svalbard: a fragment of Avalonia and Laurentia? Journal of the Geological Society 167, 1019–1032. https://doi.org/10.1144/0016-76492010-062
  • Pettersson, C.H., Pease, V., Frei, D., 2009. U–Pb zircon provenance of metasedimentary basement of the Northwestern Terrane, Svalbard: Implications for the Grenvillian–Sveconorwegian orogeny and development of Rodinia. Precambrian Research 175, 206–220. https://doi.org/10.1016/j.precamres.2009.09.010
  • Scherstén, A., Sønderholm, M., 2007. Provenance of Cretaceous and Paleocene sandstones in the West Greenland basins based on detrital zircon dating. Geological survey of Denmark and Greenland Bulletin 13, 29–32, ISSN:1604-8156.
  • Thomsen, T.B., Heijboer, T., Guarnieri, P., 2016. jAgeDisplay: software for evaluation of data distributions in U-Th-Pb geochronology. Geological Survey of Denmark and Greenland Bulletin 35, 103–106, ISSN:1604-8156.
  • Thrane, K., 2014. Provenance study of Paleocene and Cretaceous clastic sedimentary rocks from the Davis Strait and the Labrador Sea, based on U-Pb dating of detrital zircons. Bulletin of Canadian Petroleum Geology 62, 330–396. https://doi.org/10.2113/gscpgbull.62.4.330
  • Wotzlaw, J.F., Decou, A., von Eynatten, H., Wörner, G., Frei, D., 2011. Jurassic to Palaeogene tectono-magmatic evolution of northern Chile and adjacent Bolivia from detrital zircon U-Pb geochronology and heavy mineral provenance: Jurassic-Palaeogene evolution of north Chile and Bolivia. Terra Nova 23, 399–406. https://doi.org/10.1111/j.1365-3121.2011.01025.x
Rocks and minerals:
  • Berger, A., Frei, R., 2014. The fate of chromium during tropical weathering: A laterite profile from Central Madagascar. Geoderma 213, 521–532. https://doi.org/10.1016/j.geoderma.2013.09.004
  • Dyck, B., Reno, B.L., Kokfelt, T.F., 2015. The Majorqaq Belt: A record of Neoarchaean orogenesis during final assembly of the North Atlantic Craton, southern West Greenland. Lithos 220–223, 253–271. https://doi.org/10.1016/j.lithos.2015.01.024
  • Frei, D., Hollis, J.A., Gerdes, A., Harlov, D., Karlsson, C., Vasquez, P., Franz, G., Johansson, L., Knudsen, C., 2006. Advanced in situ geochronological and trace element microanalysis by laser ablation techniques. Geological survey of Denmark and Greenland bulletin 10, 25–28, ISSN:1604-8156.
  • Hutchison, M.T., Frei, D., 2009. Kimberlite and related rocks from Garnet Lake, West Greenland, including their mantle constituents, diamond occurrence, age and provenance. Lithos 112, 318–333. https://doi.org/10.1016/j.lithos.2009.05.034
  • Kalsbeek, F., Affaton, P., Ekwueme, B., Frei, R., Thrane, K., 2012. Geochronology of granitoid and metasedimentary rocks from Togo and Benin, West Africa: Comparisons with NE Brazil. Precambrian Research 196–197, 218–233. https://doi.org/10.1016/j.precamres.2011.12.006
  • Liebscher, A., Franz, G., Frei, D., Dulski, P., 2007. High-Pressure Melting of Eclogite and the P-T-X History of Tonalitic to Trondhjemitic Zoisite-Pegmatites, Munchberg Massif, Germany. Journal of Petrology 48, 1001–1019. https://doi.org/10.1093/petrology/egm008
  • Müller, S., Dziggel, A., Sindern, S., Kokfelt, T.F., Gerdes, A., Kolb, J., 2018. Age and temperature-time evolution of retrogressed eclogite-facies rocks in the Paleoproterozoic Nagssugtoqidian Orogen, South-East Greenland: Constrained from U-Pb dating of zircon, monazite, titanite and rutile. Precambrian Research 314, 468–486. https://doi.org/10.1016/j.precamres.2018.07.002
  • van Kan Parker, M., Liebscher, A., Frei, D., van Sijl, J., van Westrenen, W., Blundy, J., Franz, G., 2010. Experimental and computational study of trace element distribution between orthopyroxene and anhydrous silicate melt: substitution mechanisms and the effect of iron. Contributions to Mineralogy and Petrology 159, 459–473. https://doi.org/10.1007/s00410-009-0435-0
  • Ziemann, M.A., Förster, H.-J., Harlov, D.E., Frei, D., 2005. Origin of fluorapatite–monazite assemblages in a metamorphosed, sillimanitebearing pegmatoid, Reinbolt Hills, East Antarctica. European Journal of Mineralogy 17, 567–580. https://doi.org/10.1127/0935-1221/2005/0017-0567

Biological materials:
  • Klünder, M., Hippler, D., Witbaark, R., Frei, D., 2008. Laser ablation analysis of bivalve shells – archives of environmental information. Geological survey of Denmark and Greenland Bulletin 15, 89–92, ISSN:1604-8156.
  • Nielsen, K., Serre, S.H., Thomsen, T.B., Hüssy, K., 2018. Using LA-ICPMS to investigate seasonality in Cod otolith microchemistry. Presented at the 33rd Nordic Geological Winter Meeting, 33rd Nordic Geological Winter Meeting abstracts, pp. 249–250.
  • Serre, S.H., Nielsen, K., Fink-Jensen, P., Thomsen, T.B., Hüssy, K., 2018. Analysis of cod otolith microchemistry by continuous line transects using LA-ICP-MS. Geological Survey of Denmark and Greenland Bulletin 41, 91–94, ISSN:1604-8156.

Gem stones:
  • Keulen, N., Kalvig, P., 2013. Fingerprinting of corundum (ruby) from Fiskenæsset, West Greenland. Geological Survey of Denmark and Greenland Bulletin 28, 53–56, ISSN:1604-8156.
  • Keulen, N., Kalvig, P., Thomsen, T.B., Kokfelt, T.F., Vennemann, T., Jønsson, J.B., 2014. Determination of the origin of corundum (ruby and sapphire) from Tanzania by geochemical fingerprinting. Presented at the 31st Nordic Geological Winter Meeting, 31st Nordic Geological Winter Meeting abstracts.
  • Keulen, N., Thomsen, T.B., Schumacher, J.C., Poulsen, M.D., Kalvig, P., Vennemann, T., Salimi, R., 2018. Formation and Origin determination by geochemical fingerprinting of ruby and pink sapphire from the Fiskenæsset complex, Greenland. Presented at the 33rd Nordic Geological Winter Meeting, 33rd Nordic Geological Winter Meeting abstracts, p. 81.
  • Poulsen, M.D., Keulen, N., Hinsberg, V.J. van, Kolb, J., Vennemann, T., 2018. Controls on element exchange in ultramafic-hosted plumasite-type corundum, South-East Greenland. Presented at the Goldschmidt, Goldschmidt abstracts.

Other materials
  • Frei, D., Hollis, J.A., Gerdes, A., Harlov, D., Karlsson, C., Vasquez, P., Franz, G., Johansson, L., Knudsen, C., 2006. Advanced in situ geochronological and trace element microanalysis by laser ablation techniques. Geological survey of Denmark and Greenland bulletin 10, 25–28, ISSN:1604-8156.

Metamorphic and magmatic petrology:

  • Lehmann, B., Burgess, R., Frei, D., Belyatsky, B., Mainkar, D., Rao, N.V.C., Heaman, L.M., 2010. Diamondiferous kimberlites in central India synchronous with Deccan flood basalts. Earth and Planetary Science Letters 290, 142–149. https://doi.org/10.1016/j.epsl.2009.12.014
  • Nielsen, L.S., Rosing, M., Kokfelt, T.F., Thomsen, T.B., 2014. Rutile and Zircon Geochronology and Geochemistry of Banded Rocks from the Isua Supracrustal Belt, SW Greenland. Presented at the 31st Nordic Geological Winter Meeting, 31st Nordic Geological Winter Meeting abstracts, p. 91.

Ore petrology:

  • Bell, R.-M., Kolb, J., Waight, T.E., Bagas, L., Thomsen, T.B., 2017. A Palaeoproterozoic multi-stage hydrothermal alteration system at Nalunaq gold deposit, South Greenland. Mineralium Deposita 52, 383–404. https://doi.org/10.1007/s00126-016-0667-7

Sedimentary provenance:

  • Thomsen, T.B., Knudsen, C., Hinchey, A.M., 2015. Investigations of detrital zircon, rutile and titanite from present-day Labrador drainage basins: fingerprinting the Grenvillean front. Geological Survey of Denmark and Greenland Bulletin 33, 77–80, ISSN:1604-8156.
  • Thomsen, T.B., 2014. Simultaneous zircon age & trace element analysis by LA-SF-ICP-MS. Presented at the 31st Nordic Geological Winter Meeting, 31st Nordic Geological Winter Meeting abstracts, p. 99.

Tonny Bernt Thomsen

Seniorforsker
Petrologi og Malmgeologi
Telefon: 91333885

Priser

Kontakt laboratorielederen for information.